SYNTHETIC DATA GENERATOR FOR TESTING OF CLASSIFICATION RULE ALGORITHMS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43914967" target="_blank" >RIV/60461373:22340/17:43914967 - isvavai.cz</a>
Result on the web
<a href="http://www.nnw.cz/doi/2017/NNW.2017.27.010.pdf" target="_blank" >http://www.nnw.cz/doi/2017/NNW.2017.27.010.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2017.27.010" target="_blank" >10.14311/NNW.2017.27.010</a>
Alternative languages
Result language
angličtina
Original language name
SYNTHETIC DATA GENERATOR FOR TESTING OF CLASSIFICATION RULE ALGORITHMS
Original language description
We developed a data generating system that is able to create systematically testing datasets that accomplish user's requirements such as number of rows, number and type of attributes, number of missing values, class noise and imbalance ratio. These datasets can be used for testing of the algorithms designed for solving classification rule problem. We used them for optimizing of the parameters of the classification algorithm based on the behavior of ant colonies. But they can be advantageously used for other applications too. Program generates output files in ARFF format. Two standards and one user-define probability distributions are used in data generation: uniform distribution, normal distribution and irregular distribution for nominal attributes. To our knowledge, our system is probably the first synthetic data generation system that systematically generates datasets for examination and judgment of the classification rule algorithms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
15
Pages from-to
215-229
UT code for WoS article
000402020800003
EID of the result in the Scopus database
—