Least-squares estimators of drift parameter for discretely observed fractional Ornstein-Uhlenbeck processes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43920940" target="_blank" >RIV/60461373:22340/20:43920940 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/8/5/716/pdf" target="_blank" >https://www.mdpi.com/2227-7390/8/5/716/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/MATH8050716" target="_blank" >10.3390/MATH8050716</a>
Alternative languages
Result language
angličtina
Original language name
Least-squares estimators of drift parameter for discretely observed fractional Ornstein-Uhlenbeck processes
Original language description
We introduce three new estimators of the drift parameter of a fractional Ornstein-Uhlenbeck process. These estimators are based on modifications of the least-squares procedure utilizing the explicit formula for the process and covariance structure of a fractional Brownian motion. We demonstrate their advantageous properties in the setting of discrete-time observations with fixed mesh size, where they outperform the existing estimators. Numerical experiments by Monte Carlo simulations are conducted to confirm and illustrate theoretical findings. New estimation techniques can improve calibration of models in the form of linear stochastic differential equations driven by a fractional Brownian motion, which are used in diverse fields such as biology, neuroscience, finance and many others. © 2020 by the authors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/LTAIN19007" target="_blank" >LTAIN19007: Development of Advanced Computational Algorithms for evaluating post-surgery rehabilitation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
—
UT code for WoS article
000542738100018
EID of the result in the Scopus database
2-s2.0-85085530851