All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Least-squares estimators of drift parameter for discretely observed fractional Ornstein-Uhlenbeck processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43920940" target="_blank" >RIV/60461373:22340/20:43920940 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/5/716/pdf" target="_blank" >https://www.mdpi.com/2227-7390/8/5/716/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/MATH8050716" target="_blank" >10.3390/MATH8050716</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Least-squares estimators of drift parameter for discretely observed fractional Ornstein-Uhlenbeck processes

  • Original language description

    We introduce three new estimators of the drift parameter of a fractional Ornstein-Uhlenbeck process. These estimators are based on modifications of the least-squares procedure utilizing the explicit formula for the process and covariance structure of a fractional Brownian motion. We demonstrate their advantageous properties in the setting of discrete-time observations with fixed mesh size, where they outperform the existing estimators. Numerical experiments by Monte Carlo simulations are conducted to confirm and illustrate theoretical findings. New estimation techniques can improve calibration of models in the form of linear stochastic differential equations driven by a fractional Brownian motion, which are used in diverse fields such as biology, neuroscience, finance and many others. © 2020 by the authors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/LTAIN19007" target="_blank" >LTAIN19007: Development of Advanced Computational Algorithms for evaluating post-surgery rehabilitation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    000542738100018

  • EID of the result in the Scopus database

    2-s2.0-85085530851