Vapor Pressures and Thermophysical Properties of Dimethoxymethane, 1,2-Dimethoxyethane, 2-Methoxyethanol, and 2-Ethoxyethanol: Data Reconciliation and Perturbed-Chain Statistical Associating Fluid Theory Modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43922437" target="_blank" >RIV/60461373:22340/21:43922437 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1021/acs.jced.1c00229" target="_blank" >https://doi.org/10.1021/acs.jced.1c00229</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jced.1c00229" target="_blank" >10.1021/acs.jced.1c00229</a>
Alternative languages
Result language
angličtina
Original language name
Vapor Pressures and Thermophysical Properties of Dimethoxymethane, 1,2-Dimethoxyethane, 2-Methoxyethanol, and 2-Ethoxyethanol: Data Reconciliation and Perturbed-Chain Statistical Associating Fluid Theory Modeling
Original language description
As a continuation of our effort to establish reliable thermodynamic data for important industrial solvents, dimethoxymethane (CAS RN: 109-87-5), 1,2-dimethoxyethane (CAS RN: 110-71-4), 2-methoxyethanol (CAS RN: 109-86-4), and 2-ethoxyethanol (CAS RN: 110-80-5) were studied. Vapor pressure was measured by ebulliometry for dimethoxymethane and by static method for 1,2-dimethoxyethane, 2-methoxyethanol, and 2-ethoxyethanol. Heat capacities in the liquid phase of all four compounds were measured by Tian-Calvet calorimetry in the temperature interval (262-358) K. In the case of dimethoxymethane and 1,2-dimethoxyethane, this interval was shortened because of their volatility. The thermodynamic properties in the ideal gaseous state were calculated using the methods of statistical thermodynamics based on calculated fundamental vibrational frequencies and molecular structure data. Calculated ideal-gas heat capacities and experimental data on vapor pressures, liquid phase heat capacities, and vaporization enthalpies were treated simultaneously to obtain a consistent thermodynamic description. Comparisons with literature values are shown for all measured and derived properties. Furthermore, the developed recommended data were used to identify new molecular parameters for the studied solvents within the PC-SAFT (perturbed-chain statistical associating fluid theory) equation of state and to compare their performance with those published in earlier papers; improved performance of the new parameters was achieved. © 2021 American Chemical Society.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA19-02889S" target="_blank" >GA19-02889S: Stability of amorphous solid dispersions: Predictions by SAFT equations of state and their experimental verification</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Chemical Engineering Data
ISSN
0021-9568
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
2640-2654
UT code for WoS article
000662181900030
EID of the result in the Scopus database
2-s2.0-85108455791