Design of particle size distribution for custom dissolution profiles by solving the inverse problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924685" target="_blank" >RIV/60461373:22340/22:43924685 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.powtec.2021.10.023" target="_blank" >https://doi.org/10.1016/j.powtec.2021.10.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.powtec.2021.10.023" target="_blank" >10.1016/j.powtec.2021.10.023</a>
Alternative languages
Result language
angličtina
Original language name
Design of particle size distribution for custom dissolution profiles by solving the inverse problem
Original language description
Dissolution testing is widely used to measure the rate of drug release and predict its in-vivo behavior. The release rate can be controlled by adjusting the particle size distribution (PSD). However, experimental investigation of various particle sizes requires many time-consuming experiments. To reduce the need for them, we propose an optimization framework to solve the inverse problem, i.e., design a PSD that results in a prescribed dissolution profile. The framework's computational core predicts a dissolution profile using a population balance model coupled with a mass balance equation, while the optimization algorithm obtains the inverse solution. The model was validated using mono- and multimodal particle populations of a reference compound (KCl). The validation resulted in a good agreement between the simulated and experimental data. This suggests that the usage of the framework can provide a fast determination of the required PSD, reducing the number of experiments needed. © 2021 Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20402 - Chemical process engineering
Result continuities
Project
<a href="/en/project/GX19-26127X" target="_blank" >GX19-26127X: The robotic nano-pharmacist: Next-generation manufacturing processes for personalised therapeutic agents</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Powder Technology
ISSN
0032-5910
e-ISSN
1873-328X
Volume of the periodical
395
Issue of the periodical within the volume
JAN 2022
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
743-757
UT code for WoS article
000718001100006
EID of the result in the Scopus database
2-s2.0-85117773563