Maximizing ad campaign effectiveness through TV viewership analysis: a machine learning investigation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61384399%3A31140%2F23%3A00059308" target="_blank" >RIV/61384399:31140/23:00059308 - isvavai.cz</a>
Result on the web
<a href="https://drustvo-informatika.si/uploads/documents/6a1c2595-7d3f-4dd2-ab6c-9ed9b168c19d/SOR23Proceedings.pdf" target="_blank" >https://drustvo-informatika.si/uploads/documents/6a1c2595-7d3f-4dd2-ab6c-9ed9b168c19d/SOR23Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Maximizing ad campaign effectiveness through TV viewership analysis: a machine learning investigation
Original language description
Main topics of the document: generalized additive models; smoothing splines; random forest; interpretable machine learning; TV ratings
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 17th International Symposium on Operational Research in Slovenia SOR '23
ISBN
978-961-6165-61-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
83-86
Publisher name
Samo Drobne
Place of publication
Slovinsko
Event location
Bled, Slovinsko
Event date
Sep 20, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—