Sparse solution of least-squares twin multi-class support vector machine using l_0 and l_p-norm for classification and feature selection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61384399%3A31140%2F23%3A00059832" target="_blank" >RIV/61384399:31140/23:00059832 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/23:10472186 RIV/44555601:13440/23:43897778
Result on the web
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0893608023003982?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0893608023003982?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2023.07.039" target="_blank" >10.1016/j.neunet.2023.07.039</a>
Alternative languages
Result language
angličtina
Original language name
Sparse solution of least-squares twin multi-class support vector machine using l_0 and l_p-norm for classification and feature selection
Original language description
Main topics of the document: multi-class classification; twin k-class support vector classification; least-squares; cardinality-constrained optimization problem; l_p-norm; feature selection
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Networks
ISSN
0893-6080
e-ISSN
0893-6080
Volume of the periodical
166
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
316
Pages from-to
471-786
UT code for WoS article
001060949000001
EID of the result in the Scopus database
2-s2.0-85167787610