All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fluorescence of PRODAN in water: A computational QM/MM MD study

Result description

Fluorescent properties of PRODAN (6-propionyl-2-dimethylaminonaphthalene) in water were studied by means of excited state molecular dynamics simulations employing a quantum mechanical and molecular mechanical approach with the time-dependent density functional theory (TD-DFT QM/MM MD). The influence of solvation on PRODAN emission was investigated within several computational schemes. The best correspondence with the experimental emission spectrum was achieved for the planar excited state PRODAN conformer in the environment of 300 explicit water molecules with polarization effects included. Hence, it is demonstrated that an extended solvent environment and polarization effects are responsible for the strong solvatochromic shift of PRODAN emission in water. (C) 2014 Elsevier B. V. All rights reserved.

Keywords

Emission spectroscopyExcited statesMolecular dynamics

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fluorescence of PRODAN in water: A computational QM/MM MD study

  • Original language description

    Fluorescent properties of PRODAN (6-propionyl-2-dimethylaminonaphthalene) in water were studied by means of excited state molecular dynamics simulations employing a quantum mechanical and molecular mechanical approach with the time-dependent density functional theory (TD-DFT QM/MM MD). The influence of solvation on PRODAN emission was investigated within several computational schemes. The best correspondence with the experimental emission spectrum was achieved for the planar excited state PRODAN conformer in the environment of 300 explicit water molecules with polarization effects included. Hence, it is demonstrated that an extended solvent environment and polarization effects are responsible for the strong solvatochromic shift of PRODAN emission in water. (C) 2014 Elsevier B. V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemical Physics Letters

  • ISSN

    0009-2614

  • e-ISSN

  • Volume of the periodical

    597

  • Issue of the periodical within the volume

    MAR 2014

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    57-62

  • UT code for WoS article

    000338719700004

  • EID of the result in the Scopus database

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

CF - Physical chemistry and theoretical chemistry

Year of implementation

2014