All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule?graphene interfaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F15%3A00438498" target="_blank" >RIV/61388955:_____/15:00438498 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1039/c4nr05390g" target="_blank" >http://dx.doi.org/10.1039/c4nr05390g</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c4nr05390g" target="_blank" >10.1039/c4nr05390g</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graphene field effect transistor as a probe of electronic structure and charge transfer at organic molecule?graphene interfaces

  • Original language description

    The electronic structure of physisorbed molecules containing aromatic nitrogen heterocycles (triazine and melamine) on graphene is studied using a combination of electronic transport, X-ray photoemission spectroscopy and density functional theory calculations. The interfacial electronic structure and charge transfer of weakly coupled molecules on graphene is found to be governed by work function differences, molecular dipole moments and polarization effects. We demonstrate that molecular depolarizationplays a significant role in these charge transfer mechanisms even at submonolayer coverage, particularly for molecules which possess strong dipoles. Electronic transport measurements show a reduction of graphene conductivity and charge carrier mobility upon the adsorption of the physisorbed molecules. This effect is attributed to the formation of additional electron scattering sites in graphene by the molecules and local molecular electric fields. Our results show that adsorbed molecules

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LL1301" target="_blank" >LL1301: From Graphene Hybrid Nanostructures to Green Electronics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1471-1478

  • UT code for WoS article

    000347374600025

  • EID of the result in the Scopus database