From Cayley-Dickson Algebras to Combinatorial Grassmannians
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F15%3A00453602" target="_blank" >RIV/61388955:_____/15:00453602 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3390/math3041192" target="_blank" >http://dx.doi.org/10.3390/math3041192</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math3041192" target="_blank" >10.3390/math3041192</a>
Alternative languages
Result language
angličtina
Original language name
From Cayley-Dickson Algebras to Combinatorial Grassmannians
Original language description
Given a 2N -dimensional Cayley-Dickson algebra, where 3 N 6 , we first observe that the multiplication table of its imaginary units ea , 1 a 2N - 1 , is encoded in the properties of the projective space PG(N - 1,2) if these imaginary units are regarded as points and distinguished triads of them {ea, eb , ec} , 1 a < b < c 2N - 1 and eaeb = ec , as lines. This projective space is seen to feature two distinct kinds of lines according as a + b = c or a + b non = c . Consequently, it also exhibits (at leasttwo) different types of points in dependence on how many lines of either kind pass through each of them. In order to account for such partition of the PG(N - 1,2) , the concept of Veldkamp space of a finite point-line incidence structure is employed. The corresponding point-line incidence structure is found to be a specific binomial configuration CN; in particular, C3 (octonions) is isomorphic to the Pasch (62, 43) -configuration, C4 (sedenions) is the famous Desargues (103) -configurat
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
1192-1221
UT code for WoS article
000367619000012
EID of the result in the Scopus database
—