All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

From Cayley-Dickson Algebras to Combinatorial Grassmannians

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F15%3A00453602" target="_blank" >RIV/61388955:_____/15:00453602 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3390/math3041192" target="_blank" >http://dx.doi.org/10.3390/math3041192</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math3041192" target="_blank" >10.3390/math3041192</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    From Cayley-Dickson Algebras to Combinatorial Grassmannians

  • Original language description

    Given a 2N -dimensional Cayley-Dickson algebra, where 3 N 6 , we first observe that the multiplication table of its imaginary units ea , 1 a 2N - 1 , is encoded in the properties of the projective space PG(N - 1,2) if these imaginary units are regarded as points and distinguished triads of them {ea, eb , ec} , 1 a < b < c 2N - 1 and eaeb = ec , as lines. This projective space is seen to feature two distinct kinds of lines according as a + b = c or a + b non = c . Consequently, it also exhibits (at leasttwo) different types of points in dependence on how many lines of either kind pass through each of them. In order to account for such partition of the PG(N - 1,2) , the concept of Veldkamp space of a finite point-line incidence structure is employed. The corresponding point-line incidence structure is found to be a specific binomial configuration CN; in particular, C3 (octonions) is isomorphic to the Pasch (62, 43) -configuration, C4 (sedenions) is the famous Desargues (103) -configurat

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    30

  • Pages from-to

    1192-1221

  • UT code for WoS article

    000367619000012

  • EID of the result in the Scopus database