Veldkamp-space aspects of a sequence of nested binary Segre varieties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F15%3A00454032" target="_blank" >RIV/61388955:_____/15:00454032 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/AIHPD/20" target="_blank" >http://dx.doi.org/10.4171/AIHPD/20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/AIHPD/20" target="_blank" >10.4171/AIHPD/20</a>
Alternative languages
Result language
angličtina
Original language name
Veldkamp-space aspects of a sequence of nested binary Segre varieties
Original language description
Let S(N)=PG(1,2)xPG(1,2)x...xPG(1,2) be a Segre variety that is an NN-fold direct product of projective lines of size three. Given two geometric hyperplanes H´H´ and H´´H´´ of S(N), let us call the triple {H´,H´´,H´ΔH´´} the Veldkamp line of S(N). We shall demonstrate, for the sequence 2<=N<=42<=N<=4, that the properties of geometric hyperplanes of S(N) are fully encoded in the properties of Veldkamp of S(N−1). Using this property, a complete classification of all types of geometric hyperplanes of S(4) is provided. Employing the fact that, for 2<=N<=42<=N<=4, the (ordinary part of) Veldkamp space of S(N) is PG(2N−1,2), we shall further describe which types of geometric hyperplanes of S(N) lie on a certain hyperbolic quadric Q+0(2N−1,2)cPG(2N−1,2) that contains the S(N) and is invariant under its stabilizer group in the N=4 case we shall also single out those of them that correspond, via the Lagrangian Grassmannian of type LG(4,8), to the set of 2295 maximal subspaces of the symplectic polar space W(7,2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales de l’Institut Henri Poincaré D
ISSN
2308-5827
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
309-333
UT code for WoS article
000441468400003
EID of the result in the Scopus database
2-s2.0-85017438113