Adsorption of Expanded Pyridinium Molecules at the Electrified Interface and Its Effect on the Electron-Transfer Process
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00490605" target="_blank" >RIV/61388955:_____/18:00490605 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1021/acs.langmuir.8b00671" target="_blank" >http://dx.doi.org/10.1021/acs.langmuir.8b00671</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.langmuir.8b00671" target="_blank" >10.1021/acs.langmuir.8b00671</a>
Alternative languages
Result language
angličtina
Original language name
Adsorption of Expanded Pyridinium Molecules at the Electrified Interface and Its Effect on the Electron-Transfer Process
Original language description
Adsorption properties of a series of redox-active expanded pyridinium molecules were studied at an electrified interface by cyclic and alternating current voltammetry methods. It was shown that the adsorbed state can sufficiently block N-pyramidalization of the pyridinium redox center of 2′,6′-diphenyl-[4,1′:4′,4′′-terpyridin]-1′-ium tetrafluoroborate (2), leading to a change of the mechanism from a single two-electron-transfer process to stepwise transfer of two electrons. Chemically locked molecules 1, 9-(pyridin-4-yl)benzo[c]benzo[1,2]quinolizino[3,4,5,6-ija][1,6]naphthyridin-15-ium tetrafluoroborate (ring fusion), and 3, 3,5-dimethyl-2′,6′-diphenyl-[4,1′:4′,4′′-terpyridin]-1′-ium tetrafluoroborate (steric hindrance) do not enable N-pyramidalization of the redox center upon electron transfer (ET) and serve as references. It was shown that 1 follows Langmuir-type adsorption around a potential of zero charge and that 1-3 form a close-packed film with some repulsive interactions between individual molecules at potentials where ET takes place. It has been suggested that all three molecules lie flat on the electrode surface, with the lowest free energy of adsorption found for 2. Maximum surface concentration Γ∗ equal to (1.4 ± 0.1) × 10-10mol·cm-2was found for 1, (1.5 ± 0.1) × 10-10mol·cm-2for 2, and (1.6 ± 0.1) × 10-10mol·cm-2for 3. These findings will help to clarify the role of molecular contacts with conducting substrate in the single-molecule electron-transport measurements of 1-3 during the metal-molecule-metal junction formation process.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Langmuir
ISSN
0743-7463
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
22
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
6405-6412
UT code for WoS article
000434893600010
EID of the result in the Scopus database
2-s2.0-85047071190