All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00500238" target="_blank" >RIV/61388955:_____/19:00500238 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22340/19:43918694

  • Result on the web

    <a href="http://hdl.handle.net/11104/0292342" target="_blank" >http://hdl.handle.net/11104/0292342</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscentsci.8b00882" target="_blank" >10.1021/acscentsci.8b00882</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein

  • Original language description

    We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCu(I), where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 angstrom) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (Re-I(H126)-(CO)(3)(4,7-dimethyl-1,10-phenanthroline)(+)). Cu-I oxidation by the photoexcited Re label (*Re) 22.9 angstrom away proceeds with a similar to 70 ns time constant, similar to that of a single-tryptophan mutant (similar to 40 ns) with a 19.4 angstrom Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 -> *Re (400-475 ps, K-1 congruent to 3.5-4) and W122 -> W124(center dot+) (7-9 ns, K-2 congruent to 0.55-0.75), followed by a rate-determining (70-90 ns) Cu-I oxidation by W122(+) ca. 11 angstrom away. The photocycle is completed by 120 mu s recombination. No photochemical Cu-I oxidation was observed in Re126FWCu(I), whereas in Re126WFCu(I), the photocycle is restricted to the ReH126W124 unit and Cu-I remains isolated. QM/MM/MD simulations of Re126WWCu(I) indicate that indole solvation changes through the hopping process and W124 -> *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a similar to 9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA17-01137S" target="_blank" >GA17-01137S: Electron Transfer in (Bio)Molecular Systems: Time-Resolved Vibrational Spectroscopy and Theory</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Central Science

  • ISSN

    2374-7943

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    192-200

  • UT code for WoS article

    000456525100021

  • EID of the result in the Scopus database

    2-s2.0-85059803970