All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO2 Conversion to Methanol and Hydrocarbons under Mild Conditions

Result description

Atomically precise subnanometer catalysts are of significant interest because of their remarkable efficiency in a variety of catalytic reactions. However, the dynamic changes of active sites under reaction conditions, in particular, the transition of cluster-oxide interface structure have not yet been well-elucidated, lacking in situ measurements. By using multiple state-of-the-art in situ characterizations, here we show a dynamic interplay between copper tetramers and iron oxides in a single-size Cu-4/Fe2O3 catalyst, yielding an enrichment of surface Cu-4-Fe2+ species under reaction conditions that boosts CO2 hydrogenation at near-atmospheric pressures. During reaction, Cu-4 clusters facilitate the reduction of Fe2O3 producing surface-rich Fe2+ species in the proximate sites. The as-formed Fe2+ species in return promotes CO2 activation and transformation over Cu4 cluster, resulting in strikingly high methanol synthesis at low temperatures and C-1/C-3 hydrocarbon production in a high-temperature regime. The discovery of highly active Cu-4-Fe2+ sites thus provides new insights for the atomic-level design of copper catalyst toward high-efficiency CO2 conversion under mild conditions.

Keywords

oxygen reduction reactioncarbon-dioxideactive-sitescatalystshydrogenationcuclusterswaterxpsinterfaceCO2 conversion

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic Interplay between Copper Tetramers and Iron Oxide Boosting CO2 Conversion to Methanol and Hydrocarbons under Mild Conditions

  • Original language description

    Atomically precise subnanometer catalysts are of significant interest because of their remarkable efficiency in a variety of catalytic reactions. However, the dynamic changes of active sites under reaction conditions, in particular, the transition of cluster-oxide interface structure have not yet been well-elucidated, lacking in situ measurements. By using multiple state-of-the-art in situ characterizations, here we show a dynamic interplay between copper tetramers and iron oxides in a single-size Cu-4/Fe2O3 catalyst, yielding an enrichment of surface Cu-4-Fe2+ species under reaction conditions that boosts CO2 hydrogenation at near-atmospheric pressures. During reaction, Cu-4 clusters facilitate the reduction of Fe2O3 producing surface-rich Fe2+ species in the proximate sites. The as-formed Fe2+ species in return promotes CO2 activation and transformation over Cu4 cluster, resulting in strikingly high methanol synthesis at low temperatures and C-1/C-3 hydrocarbon production in a high-temperature regime. The discovery of highly active Cu-4-Fe2+ sites thus provides new insights for the atomic-level design of copper catalyst toward high-efficiency CO2 conversion under mild conditions.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Sustainable Chemistry & Engineering

  • ISSN

    2168-0485

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    14435-14442

  • UT code for WoS article

    000484071600015

  • EID of the result in the Scopus database

    2-s2.0-85070542684