All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00543566" target="_blank" >RIV/61388955:_____/21:00543566 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0320753" target="_blank" >http://hdl.handle.net/11104/0320753</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acscatal.0c05029" target="_blank" >10.1021/acscatal.0c05029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CO2 Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study

  • Original language description

    Subnanometer copper tetramer-zirconia catalysts turn out to be highly efficient for CO2 hydrogenation and its conversion to methane. The cluster size and substrate morphology are controlled to optimize the catalytic performance. The two types of zirconia supports investigated are prepared by atomic layer deposition (μ3 nm thick film) and supersonic cluster beam deposition (nanostructured film, μ100 nm thick). The substrate plays a crucial role in determining the activity of the catalyst as well as its cyclability over repeated thermal ramps. A temperature-programmed reaction combined with in situ X-ray characterization reveals the correlation between the evolution in the oxidation state and catalytic activity. Ex situ photoelectron spectroscopy indicates Cu clusters with stronger interactions with the nanostructured film, which can be the cause for the higher activity of this catalyst. Density functional theory calculations based on the Cu4O2 cluster supported on a ZrOx subunit reveal low activation barriers and provide mechanism for CO2 hydrogenation and its conversion to methane. Altogether, the results show a new way to tune the catalytic activity of CO2 hydrogenation catalysts through controlling the morphology of the support at the nanoscale.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACS Catalysis

  • ISSN

    2155-5435

  • e-ISSN

    2155-5435

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    6210-6224

  • UT code for WoS article

    000656056200032

  • EID of the result in the Scopus database

    2-s2.0-85106358211