All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wall-jet ion sensor based on ion transfer processes at a polarized room-temperature ionic liquid membrane

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00523056" target="_blank" >RIV/61388955:_____/20:00523056 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0307463" target="_blank" >http://hdl.handle.net/11104/0307463</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jelechem.2020.113948" target="_blank" >10.1016/j.jelechem.2020.113948</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wall-jet ion sensor based on ion transfer processes at a polarized room-temperature ionic liquid membrane

  • Original language description

    Room-temperature ionic liquid (RTIL) membrane is used to construct a wall-jet ion sensor based on the ion transfer processes at a polarized interface between RTIL and an aqueous electrolyte solution. The stream of the aqueous phase with an injected sample plug containing an electroactive ion is led against the RTIL membrane through a silver tube, which is covered with an AgCl layer, and which serves simultaneously as one of two reference electrodes in a four-electrode cell. The effects of the applied potential, the ion concentration, the volume flow rate of the mobile aqueous phase, and the injected sample volume on the chronoamperometric response of the sensor to the test samples containing tetraethylammonium cation (TEA+) as a model ion are demonstrated. The applicability of the available theory of the wall-jet electrode against which a vertical stream is flowing that is much smaller in diameter than the electrode is confirmed for this sensor. Analytical characteristics for the flow injection analysis of the studied model ion are estimated including excellent repeatability characterized by the relative standard deviation (1.64%) of the average current at the ion concentration (0.5 μmol dm−3), a low limit of detection (22.5 nmol dm−3), and the wide linear dynamic range exceeding three orders of magnitude (1 × 10−7–2 × 10−4 mol dm−3).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GA20-07350S" target="_blank" >GA20-07350S: Electrochemical and analytical aspects of the transport of addictive and psychotropic drugs across the model biological barriers</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Electroanalytical Chemistry

  • ISSN

    1572-6657

  • e-ISSN

  • Volume of the periodical

    861

  • Issue of the periodical within the volume

    MAR 2020

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    6

  • Pages from-to

    113948

  • UT code for WoS article

    000525892300016

  • EID of the result in the Scopus database

    2-s2.0-85079689049