All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00531105" target="_blank" >RIV/61388955:_____/20:00531105 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0309842" target="_blank" >http://hdl.handle.net/11104/0309842</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jtos.2020.06.001" target="_blank" >10.1016/j.jtos.2020.06.001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure

  • Original language description

    Purpose: The tear film lipid layer (TFLL) covers the tear film, stabilizing it and providing a protective barrier against the environment. The TFLL is divided into polar and non-polar sublayers, but the interplay between lipid classes in these sublayers and the structure-function relationship of the TFLL remains poorly characterized. This study aims to provide insight into TFLL function by elucidating the interactions between polar and non-polar TFLL lipids at the molecular level. Methods: Mixed films of polar O-acyl-ω-hydroxy fatty acids (OAHFA) or phospholipids and non-polar cholesteryl esters (CE) were used as a model of the TFLL. The organization of the films was studied by using a combination of Brewster angle and fluorescence microscopy in a Langmuir trough system. In addition, the evaporation resistance of the lipid films was evaluated. Results: Phospholipids and OAHFAs induced the formation of a stable multilamellar CE film. The formation of this film was driven by the interdigitation of acyl chains between the monolayer of polar lipids and the CE multilayer lamellae. Surprisingly, the multilayer structure was destabilized by both low and high concentrations of polar lipids. In addition, the CE multilayer was no more effective in resisting the evaporation of water than a polar lipid monolayer. Conclusions: Formation of multilamellar films by major tear film lipids suggest that the TFLL may have a similar structure. Moreover, in contrast to the current understanding, polar TFLL lipids may not mainly act by stabilizing the non-polar TFLL sublayer, but through a direct evaporation resistant effect. © 2020 The Authors

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA18-26751S" target="_blank" >GA18-26751S: Penetration, accumulation and interactions of selected drug-model molecules with mimics of human Tear Film Lipid Layer</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ocular Surface

  • ISSN

    1542-0124

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    545-553

  • UT code for WoS article

    000591804800002

  • EID of the result in the Scopus database

    2-s2.0-85086772309