All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transferless Inverted graphene/silicon heterostructures prepared by plasma-enhanced chemical vapor deposition of amorphous silicon on CVD graphene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00531897" target="_blank" >RIV/61388955:_____/20:00531897 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/20:00531897 RIV/00216305:26620/20:PU140128

  • Result on the web

    <a href="http://hdl.handle.net/11104/0310529" target="_blank" >http://hdl.handle.net/11104/0310529</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano10030589" target="_blank" >10.3390/nano10030589</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transferless Inverted graphene/silicon heterostructures prepared by plasma-enhanced chemical vapor deposition of amorphous silicon on CVD graphene

  • Original language description

    The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult-as is the case of graphene on noncatalytic substrates such as Si-inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 degrees C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000526090400189

  • EID of the result in the Scopus database

    2-s2.0-85082713590