Different Dynamics of CH3 and Cl Fragments from Photodissociation of CH3Cl in Clusters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00532538" target="_blank" >RIV/61388955:_____/20:00532538 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10422915
Result on the web
<a href="http://hdl.handle.net/11104/0310999" target="_blank" >http://hdl.handle.net/11104/0310999</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.0c05926" target="_blank" >10.1021/acs.jpca.0c05926</a>
Alternative languages
Result language
angličtina
Original language name
Different Dynamics of CH3 and Cl Fragments from Photodissociation of CH3Cl in Clusters
Original language description
We investigate the photodissociation of CH3Cl at 193.3 nm using the velocity map imaging technique in (CH3Cl)n clusters in comparison with isolated molecules. Our results for the isolated molecules are in excellent agreement with the previous study of Cl fragments, and we extend it by detecting also the CH3(ν = 0) fragments. For the clusters, the Cl (and Cl*) and CH3 fragment images are dominated by intense central isotropic features. The corresponding kinetic energy distributions (KEDs) reveal significant differences in the CH3 and Cl fragment dynamics. While the CH3 fragments exhibit a very narrow near-zero kinetic energy peak, pointing to almost complete caging of CH3 fragments, the Cl (and Cl*) fragments show more structured KEDs extending all the way to the maximum available kinetic energy. The Cl KED spectra have a bimodal character with two broad peaks close to zero and around 0.6 eV. We observe a higher ICH3(ν=0)/ICl signal ratio from the clusters compared to the monomers. This is attributed to an efficient quenching of the higher vibrationally excited ν2 states of the CH3 fragments generated in the photodissociation. Collisional quenching of these excited states in clusters enhances the detected CH3(ν = 0) state. Finally, we determine the [Cl*]/[Cl] branching ratio for the photodissociation pathways in the clusters as ≈0.55 ± 0.15 compared to 0.86 for the isolated molecules, which is also attributed to the collisional quenching of the excited state in the clusters. The clusters and photofragment dynamics are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA19-14105S" target="_blank" >GA19-14105S: Heterogeneous reactions of the atmospheric radicals on clusters.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
—
Volume of the periodical
124
Issue of the periodical within the volume
38
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
7633-7643
UT code for WoS article
000575821700002
EID of the result in the Scopus database
2-s2.0-85091358281