All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cross Platform Analysis of Volatile Organic Compounds Using Selected Ion Flow Tube and Proton-Transfer-Reaction Mass Spectrometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00542440" target="_blank" >RIV/61388955:_____/21:00542440 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0319849" target="_blank" >http://hdl.handle.net/11104/0319849</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/jasms.1c00027" target="_blank" >10.1021/jasms.1c00027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cross Platform Analysis of Volatile Organic Compounds Using Selected Ion Flow Tube and Proton-Transfer-Reaction Mass Spectrometry

  • Original language description

    Volatile breath metabolites serve as potential disease biomarkers. Online mass spectrometry (MS) presents real-time quantification of breath volatile organic compounds (VOCs). The study aims to assess the relationship between two online analytical mass spectrometry techniques in the quantification of target breath metabolites: selected ion flow tube mass spectrometry (SIFT-MS) and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS). The two following techniques were employed: (i) direct injection with bag sampling using SIFT-MS and PTR-ToF-MS and (ii) direct injection and thermal desorption (TD) tube comparison using PTR-ToF-MS. The concentration of abundant breath metabolites, acetone and isoprene, demonstrated a strong positive linear correlation between both mass spectrometry techniques (r = 0.97, r = 0.89, respectively, p < 0.001) and between direct injection and TD tube (r = 0.97, r = 0.92, respectively, p < 0.001) breath sampling techniques. This was reflected for the majority of short chain fatty acids and alcohols tested (r > 0.80, p < 0.001). Analyte concentrations were notably higher with the direct injection of a sampling bag compared to the TD method. All metabolites produced a high degree of agreement in the detection range of VOCs between SIFT-MS and PTR-ToF-MS, with the majority of compounds falling within 95% of the limits of agreement with Bland-Altman analysis. The cross platform analysis of exhaled breath demonstrates strong positive correlation coefficients, linear regression, and agreement in target metabolite detection rates between both breath sampling techniques. The study demonstrates the transferability of using data outputs between SIFT-MS and PTR-ToF-MS. It supports the implementation of a TD platform in multi-site studies for breath biomarker research in order to facilitate sample transport between clinics and the laboratory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the American Society for Mass Spectrometry

  • ISSN

    1044-0305

  • e-ISSN

    1879-1123

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1215-1223

  • UT code for WoS article

    000648704200010

  • EID of the result in the Scopus database

    2-s2.0-85104911810