All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H-SiC

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00544608" target="_blank" >RIV/61388955:_____/21:00544608 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0321442" target="_blank" >http://hdl.handle.net/11104/0321442</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.carbon.2021.07.098" target="_blank" >10.1016/j.carbon.2021.07.098</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H-SiC

  • Original language description

    Due to weak light-matter interaction, standard chemical vapor deposition (CVD)/exfoliated single-layer graphene-based photodetectors show low photoresponsivity (on the order of mA/W). However, epitaxial graphene (EG) offers a more viable approach for obtaining devices with good photoresponsivity. EG on 4H–SiC also hosts an interfacial buffer layer (IBL), which is the source of electron carriers applicable to quantum optoelectronic devices. We utilize these properties to demonstrate a gate-free, planar EG/4H–SiC-based device that enables us to observe the positive photoresponse for (405–532) nm and negative photoresponse for (632–980) nm laser excitation. The broadband binary photoresponse mainly originates from the energy band alignment of the IBL/EG interface and the highly sensitive work function of the EG. We find that the photoresponsivity of the device is > 10 A/W under 405 nm of power density 7.96 mW/cm2 at 1 V applied bias, which is three orders of magnitude greater than the obtained values of CVD/exfoliated graphene and higher than the required value for practical applications. These results path the way for selective light-triggered logic devices based on EG and can open a new window for broadband photodetection.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GX20-08633X" target="_blank" >GX20-08633X: ÅrchitectRonics of Two-dimensional crystals via synergy of chiral electro-chemical and opto-electronic concepts on Å-scale</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Carbon

  • ISSN

    0008-6223

  • e-ISSN

    1873-3891

  • Volume of the periodical

    184

  • Issue of the periodical within the volume

    OCT 2021

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    72-81

  • UT code for WoS article

    000704334600007

  • EID of the result in the Scopus database

    2-s2.0-85112361716