All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Comparison of mononuclear and dinuclear copper(ii) biomimetic complexes: spectroelectrochemical mechanistic study of their catalytic pathways

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00561664" target="_blank" >RIV/61388955:_____/22:00561664 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216275:25310/22:39918877

  • Result on the web

    <a href="https://hdl.handle.net/11104/0334189" target="_blank" >https://hdl.handle.net/11104/0334189</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d2dt01610a" target="_blank" >10.1039/d2dt01610a</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Comparison of mononuclear and dinuclear copper(ii) biomimetic complexes: spectroelectrochemical mechanistic study of their catalytic pathways

  • Original language description

    Two catecholase-like biomimetic catalysts, namely, two dinuclear copper complexes [Cu-2(L1)(OH)(H2O)(EtOH)][ClO4](2) (C1) and [Cu2Ac2O(L1)ClO4] (C2) with the 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with the mononuclear complex Cu(ClO4)(2)(L2) (C3) containing ligand 1,2-(C5H4N-6-OCH3-2-CH=N)(2)CH2CH2 (L2), were synthesized. Their catalytic pathways were investigated and compared. The evaluation of the catalytic activity of compound C1 (and C2, C3) using the Michaelis-Menten model was represented by values of K-M = 272.93 (223.02, 1616) mu mol L-1 and V-max of 0.981 (1.617, 1.689) mu mol L-1 s(-1). The role of water content in the solvent is also discussed. The dinuclear complexes C1 and C2 were found to be more efficient catalysts than mononuclear complex C3. The mode of catalytic action was characterized via cyclic voltammetry, spectrophotometry, and UV-Vis spectroelectrochemistry. The catalytic mechanism of 3,5-di-tert butyl catechol oxidation in the presence of oxygen was proposed. The reaction circle was proved by the confirmation of the chemical reversibility of complex reduction. The advantage of the in situ spectroelectrochemical measurement enabled to control the reduction of quinone formed by the chemical reaction of catechol with oxygen in solution. At this step, the simultaneous change in the absorption spectrum indicated a change in the copper redox state of the catalyst.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GA19-03160S" target="_blank" >GA19-03160S: Electrochemical study on new artificial enzymes and their role in sensing of neurotransmitters</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Dalton Transactions

  • ISSN

    1477-9226

  • e-ISSN

    1477-9234

  • Volume of the periodical

    51

  • Issue of the periodical within the volume

    36

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    13703-13715

  • UT code for WoS article

    000843687500001

  • EID of the result in the Scopus database

    2-s2.0-85137048906