Titanium Trisulfide Nanosheets and Nanoribbons for Field Emission-Based Nanodevices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00567645" target="_blank" >RIV/61388955:_____/23:00567645 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0338872" target="_blank" >https://hdl.handle.net/11104/0338872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.2c03460" target="_blank" >10.1021/acsanm.2c03460</a>
Alternative languages
Result language
angličtina
Original language name
Titanium Trisulfide Nanosheets and Nanoribbons for Field Emission-Based Nanodevices
Original language description
The field emission (FE) properties of TiS3 nanosheets and nanoribbons, synthesized by direct sulfuration of bulk titanium, are investigated. The nanosheets show an enhanced FE behavior with a low turn-on field of ∼0.3 V/μm, required for drawing an emission current density of ∼10 μA/cm2. Interestingly, the TiS3 nanosheet emitter delivered a large emission current density of ∼0.9 mA/cm2 at a relatively low applied electric field of ∼0.4 V/μm. We have estimated the values of the field enhancement factor (β), which are found to be ∼5 × 104 for the TiS3 nanosheet emitter and ∼4 × 103 for the nanoribbon emitter. We attribute the superior FE performance to the presence of atomically sharp edges and the reduced thickness of TiS3, as reflected in the high value of β. In fact, the nanosheet sample presents a higher density of ultrathin layers (∼12 nm-thick), and thus, they have a larger edge to volume ratio than the nanoribbon samples (which are ∼19 nm-thick). The superior FE behavior of TiS3 nanosheets over nanoribbons makes them a propitious field emitter and can be utilized for various FE-based applications, demanding large emission currents and lower operational voltages. Moreover, the FE current stability recorded on these samples confirms their promising performance. Thus, the present investigation brings out a great promise of TiS3 nanosheets and nanoribbons as field emitters for vacuum nanoelectronics devices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GX20-08633X" target="_blank" >GX20-08633X: ÅrchitectRonics of Two-dimensional crystals via synergy of chiral electro-chemical and opto-electronic concepts on Å-scale</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
44-49
UT code for WoS article
000919468000001
EID of the result in the Scopus database
2-s2.0-85146159011