Origin of the correlation between the standard Gibbs energy of ion transfer and the solubility of water in organic solvents
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00574240" target="_blank" >RIV/61388955:_____/23:00574240 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0344578" target="_blank" >https://hdl.handle.net/11104/0344578</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2023.142966" target="_blank" >10.1016/j.electacta.2023.142966</a>
Alternative languages
Result language
angličtina
Original language name
Origin of the correlation between the standard Gibbs energy of ion transfer and the solubility of water in organic solvents
Original language description
Standard Gibbs energies ΔwoGi0 of the Cs+ and Li+ ion transfer from water to 1,2-dichlorobenzene, and to an n-octanol + α,α,α-trifluorotoluene mixture were obtained from the steady-state voltammetric measurements. The equilibrium concentrations of water in these solvents were determined by the Karl Fischer method. Analogous data have previously been reported for the transfer of these ions to α,α,α-trifluorotoluene, 1.6-dichlorohexane, 1,4-dichlorobutane, 1,2-dichloroethane, o-nitrophenyl octyl ether, nitrobenzene, and n-octanol. Based on this collection of data, a correlation was established between the experimental values of ΔwoGi0 for the Cs+ or Li+ ion transfer and the reported content of water in the organic solvent characterized by the ratio cW/cS of the molar concentrations of water (cW) and the organic solvent molecules (cS) in the organic solvent S. This correlation exhibits a rapid decay of ΔwoGi0 in the range of the small values of the ratio cW/cS= 0.0025 - 0.02, while towards higher values of cW/cSthe standard Gibbs energy of ion transfer tends to attain a constant value. The relationship was successfully simulated using the equations derived for a Born-type electrostatic model of solvation of the ion, which was combined with a thermodynamic model of the preferential solvation in the mixed solvents. The mechanism of an ion transfer assumes the partial replacement of the water molecules in the first hydration layer of the transferred ion by molecules of the organic solvent. Spectroscopic evidence is presented pointing to the absence of water clusters in pure 1,2-dichloroethane saturated with water, which therefore should not play a role in the ion transfer mechanism. © 2023 Elsevier Ltd.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/GA22-32631S" target="_blank" >GA22-32631S: Anomalous salt extraction from water to polar organic solvents: A novel mechanism of the spontaneous emulsification and practical application</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica acta
ISSN
0013-4686
e-ISSN
1873-3859
Volume of the periodical
465
Issue of the periodical within the volume
OCT 2023
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
142966
UT code for WoS article
001059062900001
EID of the result in the Scopus database
2-s2.0-85167605033