All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Origin of the correlation between the standard Gibbs energy of ion transfer and the solubility of water in organic solvents

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00574240" target="_blank" >RIV/61388955:_____/23:00574240 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0344578" target="_blank" >https://hdl.handle.net/11104/0344578</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.electacta.2023.142966" target="_blank" >10.1016/j.electacta.2023.142966</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Origin of the correlation between the standard Gibbs energy of ion transfer and the solubility of water in organic solvents

  • Original language description

    Standard Gibbs energies ΔwoGi0 of the Cs+ and Li+ ion transfer from water to 1,2-dichlorobenzene, and to an n-octanol + α,α,α-trifluorotoluene mixture were obtained from the steady-state voltammetric measurements. The equilibrium concentrations of water in these solvents were determined by the Karl Fischer method. Analogous data have previously been reported for the transfer of these ions to α,α,α-trifluorotoluene, 1.6-dichlorohexane, 1,4-dichlorobutane, 1,2-dichloroethane, o-nitrophenyl octyl ether, nitrobenzene, and n-octanol. Based on this collection of data, a correlation was established between the experimental values of ΔwoGi0 for the Cs+ or Li+ ion transfer and the reported content of water in the organic solvent characterized by the ratio cW/cS of the molar concentrations of water (cW) and the organic solvent molecules (cS) in the organic solvent S. This correlation exhibits a rapid decay of ΔwoGi0 in the range of the small values of the ratio cW/cS= 0.0025 - 0.02, while towards higher values of cW/cSthe standard Gibbs energy of ion transfer tends to attain a constant value. The relationship was successfully simulated using the equations derived for a Born-type electrostatic model of solvation of the ion, which was combined with a thermodynamic model of the preferential solvation in the mixed solvents. The mechanism of an ion transfer assumes the partial replacement of the water molecules in the first hydration layer of the transferred ion by molecules of the organic solvent. Spectroscopic evidence is presented pointing to the absence of water clusters in pure 1,2-dichloroethane saturated with water, which therefore should not play a role in the ion transfer mechanism. © 2023 Elsevier Ltd.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/GA22-32631S" target="_blank" >GA22-32631S: Anomalous salt extraction from water to polar organic solvents: A novel mechanism of the spontaneous emulsification and practical application</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electrochimica acta

  • ISSN

    0013-4686

  • e-ISSN

    1873-3859

  • Volume of the periodical

    465

  • Issue of the periodical within the volume

    OCT 2023

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    142966

  • UT code for WoS article

    001059062900001

  • EID of the result in the Scopus database

    2-s2.0-85167605033