All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How to Use Ion-Molecule Reaction Data Previously Obtained in Helium at 300 K in the New Generation of Selected Ion Flow Tube Mass Spectrometry Instruments Operating in Nitrogen at 393 K

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00574260" target="_blank" >RIV/61388955:_____/23:00574260 - isvavai.cz</a>

  • Result on the web

    <a href="https://hdl.handle.net/11104/0344602" target="_blank" >https://hdl.handle.net/11104/0344602</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.3c02173" target="_blank" >10.1021/acs.analchem.3c02173</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    How to Use Ion-Molecule Reaction Data Previously Obtained in Helium at 300 K in the New Generation of Selected Ion Flow Tube Mass Spectrometry Instruments Operating in Nitrogen at 393 K

  • Original language description

    Selected ion flow tube mass spectrometry (SIFT-MS) instruments have significantly developed since this technique was introduced more than 20 years ago. Most studies of the ion-molecule reaction kinetics that are essential for accurate analyses of trace gases and vapors in air and breath were conducted in He carrier gas at 300 K, while the new SIFT-MS instruments (optimized to quantify concentrations down to parts per trillion by volume) operate with N2 carrier gas at 393 K. Thus, we pose the question of how to reuse the data from the extensive body of previous literature using He at room temperature in the new instruments operating with N2 carrier gas at elevated temperatures. Experimentally, we found the product ions to be qualitatively similar, although there were differences in the branching ratios, and some reaction rate coefficients were lower in the heated N2 carrier gas. The differences in the reaction kinetics may be attributed to temperature, an electric field in the current flow tubes, and the change from He to N2 carrier gas. These results highlight the importance of adopting an updated reaction kinetics library that accounts for the new instruments’ specific conditions. In conclusion, almost all previous rate coefficients may be used after adjustment for higher temperatures, while some product ion branching ratios need to be updated.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA21-25486S" target="_blank" >GA21-25486S: Selected ion flow drift tube mass spectrometry with negative ions and nitrogen carrier gas</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

    1520-6882

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    29

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    11157-11163

  • UT code for WoS article

    001030474400001

  • EID of the result in the Scopus database

    2-s2.0-85166425893