All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low-Temperature Selective Oxidative Dehydrogenation of Cyclohexene by Titania-Supported Nanostructured Pd, Pt, and Pt–Pd Catalytic Films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00583593" target="_blank" >RIV/61388955:_____/24:00583593 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10491974

  • Result on the web

    <a href="https://hdl.handle.net/11104/0351599" target="_blank" >https://hdl.handle.net/11104/0351599</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.3c07064" target="_blank" >10.1021/acs.jpcc.3c07064</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low-Temperature Selective Oxidative Dehydrogenation of Cyclohexene by Titania-Supported Nanostructured Pd, Pt, and Pt–Pd Catalytic Films

  • Original language description

    Films of titania-supported monometallic Pd, Pt, and bimetallic Pt–Pd catalysts made of metallic nanoparticles were prepared by magnetron sputtering and studied in the oxidative dehydrogenation (ODH) of cyclohexene. Pd/TiOx and Pt–Pd/TiOx were found active at as low temperature as 150 °C and showed high catalytic activity with high conversion (up to 81%) and benzene selectivity exceeding 97% above 200 °C. In turn, the Pt/TiOx catalyst performed poorly with the onset of benzene production at 200 °C only and conversions not exceeding 5%. The activity of bimetallic Pt–Pd catalysts far exceeded all of the other investigated catalysts at temperatures below 250 °C. However, the production of benzene significantly dropped with a further temperature increase due to the enhanced combustion of CO2 at the expense of benzene formation. As in situ NAP-XPS measurement of the Pt–Pd/TiOx catalyst in the reaction conditions of the ODH of cyclohexene revealed Pd surface enrichment during the first temperature ramp, we assume that Pd surface enrichment is responsible for enhanced activity at low temperatures in the bimetallic catalyst. At the same time, the Pt constituent contributes to stronger cyclohexene adsorption and oxygen activation at elevated temperatures, leading to changes in conversion and selectivity with a drop in benzene formation and increased combustion to CO2. Both the monometallic Pd and the Pt–Pd-based catalysts produced a small amount of the second valuable product, cyclohexadiene, and below 250 °C produced only a negligible amount of CO2 (<0.2%). To summarize, Pd- and Pt–Pd-based catalysts were found to be promising candidates for highly selective low-temperature dehydrogenation of cyclic hydrocarbons that showcased reproducibility and stability after the temperature activation. Importantly, these catalysts were fabricated by utilizing proven methods suitable for large-scale production on extended surfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LM2023072" target="_blank" >LM2023072: Surface Physics Laboratory – Hydrogen Technology Centre</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

    1932-7455

  • Volume of the periodical

    128

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3180-3192

  • UT code for WoS article

    001166832400001

  • EID of the result in the Scopus database

    2-s2.0-85185582572