Mechanism and rate of anomalous extraction of chloride salts from water to 1,2-dichloroethane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00587478" target="_blank" >RIV/61388955:_____/24:00587478 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S001346862400882X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S001346862400882X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2024.144642" target="_blank" >10.1016/j.electacta.2024.144642</a>
Alternative languages
Result language
angličtina
Original language name
Mechanism and rate of anomalous extraction of chloride salts from water to 1,2-dichloroethane
Original language description
Open circuit potential (OCP) measurements, potentiostatic pulse (PP) amperometry and cyclic voltammetry (CV), were used to investigate and to sort by rate the anomalous extraction of the chloride salts RCl of the cations R+ = tetrabutylammonium (TBA+), tetrapentylammonium (TPeA+), tetrahexylammonium (THexA+), tetraheptylammonium (THepA+) and bis(triphenyl-phosphoranylidene)ammonium (BA+) from water to 1,2-dichloroethane (DCE). A tentative mechanism is proposed comprising (a) the diffusion-controlled transport of the ion-pairs (RCl)ip from the aqueous to the organic solvent phase providing a major contribution to the chloride extraction, (b) decomposition of the multiple ion-pairs or clusters (RCl)ipx, which are formed by agglomeration of the single ion-pairs (RCl)ip in the aqueous phase (w), and (c) the exponential decay of the ion-pairs (RCl)ip accumulated on the organic solvent side of the interface at the beginning of the OCP measurements. This model enables to simulate successfully the experimental time dependence of the chloride concentration. A conclusion is made that the effect of the composition of the organic solvent electrolyte RX, where X- = tetraphenylborate (TPB-) or tetrakis(pentafluorophenyl) borate (TB-), on the rate and extent of the anomalous accumulation of the chloride anion in the phase (o) of the two-phase liquid system LiCl(w)/RX(o) can be related to the hydrophobicity of the electrolytes RCl and RX. The latter property can be characterized by the standard Gibbs energy of transfer from the aqueous (w) to the organic solvent (o) phase. The accumulation of the chloride anion in the phase (o) appears to be promoted by the decreasing value of the transfer Gibbs energy of RCl in the sequence TBACl > TPeACl > THexACl > THepACl > BACl, while the decreasing value of the transfer Gibbs energy of RX in the sequence TBATPB > TPeATPB > THexATPB > THepATPB > BATPB > BATB starts to block the cycle combining the energetically unfavorable extraction of RX from the phase (o) to the phase (w) with the energetically favorable extraction of RCl in the opposite direction. IR spectroscopy provides evidence of the formation of the water clusters in the organic solvent phase equilibrated with the aqueous phase in the presence of the tetraalkylammonium cation in both phases, which are supposed to drive the anomalous accumulation of the chloride anion in the phase (o).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
<a href="/en/project/GA22-32631S" target="_blank" >GA22-32631S: Anomalous salt extraction from water to polar organic solvents: A novel mechanism of the spontaneous emulsification and practical application</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrochimica acta
ISSN
0013-4686
e-ISSN
1873-3859
Volume of the periodical
498
Issue of the periodical within the volume
SEP 2024
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
144642
UT code for WoS article
001267414700001
EID of the result in the Scopus database
2-s2.0-85197652311