Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00587607" target="_blank" >RIV/61388955:_____/24:00587607 - isvavai.cz</a>
Result on the web
<a href="https://hdl.handle.net/11104/0354736" target="_blank" >https://hdl.handle.net/11104/0354736</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpca.4c02756" target="_blank" >10.1021/acs.jpca.4c02756</a>
Alternative languages
Result language
angličtina
Original language name
Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
Original language description
The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/EH22_008%2F0004649" target="_blank" >EH22_008/0004649: Quantum Engineering and Nanotechnology</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physical Chemistry A
ISSN
1089-5639
e-ISSN
1520-5215
Volume of the periodical
128
Issue of the periodical within the volume
27
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
5321-5330
UT code for WoS article
001258193400001
EID of the result in the Scopus database
2-s2.0-85197102259