All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Basicity of MnIII-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00600567" target="_blank" >RIV/61388955:_____/24:00600567 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03254" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03254</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.inorgchem.4c03254" target="_blank" >10.1021/acs.inorgchem.4c03254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Basicity of MnIII-Hydroxo Complexes Controls the Thermodynamics of Proton-Coupled Electron Transfer Reactions

  • Original language description

    Several manganese-dependent enzymes utilize MnIII-hydroxo units in concerted proton-electron transfer (CPET) reactions. We recently demonstrated that hydrogen bonding to the hydroxo ligand in the synthetic [MnIII(OH)(PaPy2N)]+ complex increased rates of CPET reactions compared to the [MnIII(OH)(PaPy2Q)]+ complex that lacks a hydrogen bond. In this work, we determine the effect of hydrogen bonding on the basicity of the hydroxo ligand and evaluate the corresponding effect on CPET reactions. Both [MnIII(OH)(PaPy2Q)]+ and [MnIII(OH)(PaPy2N)]+ react with strong acids to yield MnIII-aqua complexes [MnIII(OH2)(PaPy2Q)]2+ and [MnIII(OH2)(PaPy2N)]2+, for which we determined pKa values of 7.6 and 13.1, respectively. Reactions of the MnIII-aqua complexes with one-electron reductants yielded estimates of reduction potentials, which were combined with pKa values to give O-H bond dissociation free energies (BDFEs) of 77 and 85 kcal mol-1 for the MnII-aqua complexes [MnII(OH2)(PaPy2Q)]+ and [MnII(OH2)(PaPy2N)]+. Using these BDFEs, we performed an analysis of the thermodynamic driving force for phenol oxidation by these complexes and observed the unexpected result that slower rates are associated with more asynchronous CPET. In addition, reactions of acidic phenols with the MnIII-hydroxo complexes show rates that deviate from the thermodynamic trends, consistent with a change in mechanism from CPET to proton transfer.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GA24-11247S" target="_blank" >GA24-11247S: Off-diagonal thermodynamics and its connection with other factors as a route to predictable selectivity in C-H bond cleavage</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Inorganic Chemistry

  • ISSN

    0020-1669

  • e-ISSN

    1520-510X

  • Volume of the periodical

    63

  • Issue of the periodical within the volume

    46

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    21941-21953

  • UT code for WoS article

    001349186700001

  • EID of the result in the Scopus database

    2-s2.0-85208174129