All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles

Result description

Ice nanoparticles (H2O)N, N 450, generated in a molecular beam experiment pick up individual gas phase molecules of 2-hydroxypyridine and 2-pyridone (HP) evaporated in a pickup cell at temperatures between 298-343 K. The mass spectra of the doped nanoparticles show evidence for generation of clusters of adsorbed molecules (HP)n up to n = 8. The clusters are ionized either by 70 eV electrons or by two photons at 315 nm (3.94 eV). The two ionization methods yield different spectra and their comparison provides an insight into the neutral cluster composition, ionization and intracluster ion-molecule reactions, and cluster fragmentation. Quite a few molecules were reported not to coagulate on ice nanoparticles previously. The (HP)n cluster generation on ice nanoparticles represents the first evidence for coagulating of molecules and cluster formation on free ice nanoparticles. For comparison, we investigate the coagulation of HP molecules picked up on large clusters ArN, N 205, and also (HP)n clusters generated in supersonic expansions with Ar buffer gas. This comparison points to a propensity for the (HP)2 dimer generation on ice nanoparticles. This shows the feasibility of base pairing for model of biological molecules on free ice nanoparticles. This result is important for hypotheses of the biomolecule synthesis on ice grains in the space. We support our findings also by theoretical calculations which show, among others, the HP dimer structures on water clusters.

Keywords

doped nanoparticlesargonbiomolecules

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles

  • Original language description

    Ice nanoparticles (H2O)N, N 450, generated in a molecular beam experiment pick up individual gas phase molecules of 2-hydroxypyridine and 2-pyridone (HP) evaporated in a pickup cell at temperatures between 298-343 K. The mass spectra of the doped nanoparticles show evidence for generation of clusters of adsorbed molecules (HP)n up to n = 8. The clusters are ionized either by 70 eV electrons or by two photons at 315 nm (3.94 eV). The two ionization methods yield different spectra and their comparison provides an insight into the neutral cluster composition, ionization and intracluster ion-molecule reactions, and cluster fragmentation. Quite a few molecules were reported not to coagulate on ice nanoparticles previously. The (HP)n cluster generation on ice nanoparticles represents the first evidence for coagulating of molecules and cluster formation on free ice nanoparticles. For comparison, we investigate the coagulation of HP molecules picked up on large clusters ArN, N 205, and also (HP)n clusters generated in supersonic expansions with Ar buffer gas. This comparison points to a propensity for the (HP)2 dimer generation on ice nanoparticles. This shows the feasibility of base pairing for model of biological molecules on free ice nanoparticles. This result is important for hypotheses of the biomolecule synthesis on ice grains in the space. We support our findings also by theoretical calculations which show, among others, the HP dimer structures on water clusters.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Volume of the periodical

    120

  • Issue of the periodical within the volume

    27

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    4720-4730

  • UT code for WoS article

    000379988900014

  • EID of the result in the Scopus database

    2-s2.0-84978877522

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

CF - Physical chemistry and theoretical chemistry

Year of implementation

2016