All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Clustering of Uracil Molecules on Ice Nanoparticles

Result description

We generate a molecular beam of ice nano particles (H2O)(N), N approximate to 130-220, which picks up several individual gas phase uracil' (U) or 5-bromouracil (BrU) molecules. The mass spectra of the doped nanoparticles prove that the uracil and bromouracil molecules coagulate to clusters on the ice nanoparticles. Calculations of U and BrU monomers and dimers on the ice nanoparticles provide theoretical support for the cluster formation. The (U)(m) H+ and (BrU)(m)H+ intensity dependencies on m extracted from the mass spectra suggest a smaller tendency of BrU to coagulate compared to U, which is substantiated by a lower mobility of bromouracil on the ice surface. The hydrated U-m.(H2O) H-n(+) series are also reported and discussed. On the basis of comparison with the previous experiments, we suggest that the observed propensity for aggregation on ice nanoparticles is a more general trend for biomolecules forming strong hydrogen bonds. This, together with their mobility, leads to their coagulation on ice nanopartides which is an important aspect for astrochemistry.

Keywords

infrared spectroscopyab-initioproton transfer

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Clustering of Uracil Molecules on Ice Nanoparticles

  • Original language description

    We generate a molecular beam of ice nano particles (H2O)(N), N approximate to 130-220, which picks up several individual gas phase uracil' (U) or 5-bromouracil (BrU) molecules. The mass spectra of the doped nanoparticles prove that the uracil and bromouracil molecules coagulate to clusters on the ice nanoparticles. Calculations of U and BrU monomers and dimers on the ice nanoparticles provide theoretical support for the cluster formation. The (U)(m) H+ and (BrU)(m)H+ intensity dependencies on m extracted from the mass spectra suggest a smaller tendency of BrU to coagulate compared to U, which is substantiated by a lower mobility of bromouracil on the ice surface. The hydrated U-m.(H2O) H-n(+) series are also reported and discussed. On the basis of comparison with the previous experiments, we suggest that the observed propensity for aggregation on ice nanoparticles is a more general trend for biomolecules forming strong hydrogen bonds. This, together with their mobility, leads to their coagulation on ice nanopartides which is an important aspect for astrochemistry.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry A

  • ISSN

    1089-5639

  • e-ISSN

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    1069-1077

  • UT code for WoS article

    000393928200017

  • EID of the result in the Scopus database

    2-s2.0-85026810364

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Physical chemistry

Year of implementation

2017