All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F16%3A00458986" target="_blank" >RIV/61388963:_____/16:00458986 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14740/16:00087769

  • Result on the web

    <a href="http://link.springer.com/article/10.1007/s10858-015-0005-x" target="_blank" >http://link.springer.com/article/10.1007/s10858-015-0005-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10858-015-0005-x" target="_blank" >10.1007/s10858-015-0005-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions

  • Original language description

    Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely (1)J(CH) and (3)J(HH) couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over-or underestimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Biomolecular NMR

  • ISSN

    0925-2738

  • e-ISSN

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    53-62

  • UT code for WoS article

    000372168000006

  • EID of the result in the Scopus database

    2-s2.0-84957946747