All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modulation of Ca(v)3.2 T-type calcium channel permeability by asparagine-linked glycosylation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F16%3A00461232" target="_blank" >RIV/61388963:_____/16:00461232 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/19336950.2016.1138189" target="_blank" >http://dx.doi.org/10.1080/19336950.2016.1138189</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/19336950.2016.1138189" target="_blank" >10.1080/19336950.2016.1138189</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modulation of Ca(v)3.2 T-type calcium channel permeability by asparagine-linked glycosylation

  • Original language description

    Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Ca(v)3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCa(v)3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCa(v)3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Channels

  • ISSN

    1933-6950

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    175-184

  • UT code for WoS article

    000374581700004

  • EID of the result in the Scopus database

    2-s2.0-84978393937