Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F19%3A00509813" target="_blank" >RIV/61388963:_____/19:00509813 - isvavai.cz</a>
Result on the web
<a href="https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007962" target="_blank" >https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007962</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.ppat.1007962" target="_blank" >10.1371/journal.ppat.1007962</a>
Alternative languages
Result language
angličtina
Original language name
Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites
Original language description
Enteroviruses, members of the family of picornaviruses, are the most common viral infectious agents in humans causing a broad spectrum of diseases ranging from mild respiratory illnesses to life-threatening infections. To efficiently replicate within the host cell, enteroviruses hijack several host factors, such as ACBD3. ACBD3 facilitates replication of various enterovirus species, however, structural determinants of ACBD3 recruitment to the viral replication sites are poorly understood. Here, we present a structural characterization of the interaction between ACBD3 and the non-structural 3A proteins of four representative enteroviruses (poliovirus, enterovirus A71, enterovirus D68, and rhinovirus B14). In addition, we describe the details of the 3A-3A interaction causing the assembly of the ACBD3-3A heterotetramers and the interaction between the ACBD3-3A complex and the lipid bilayer. Using structure-guided identification of the point mutations disrupting these interactions, we demonstrate their roles in the intracellular localization of these proteins, recruitment of downstream effectors of ACBD3, and facilitation of enterovirus replication. These structures uncovered a striking convergence in the mechanisms of how enteroviruses and kobuviruses, members of a distinct group of picornaviruses that also rely on ACBD3, recruit ACBD3 and its downstream effectors to the sites of viral replication.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS Pathogens
ISSN
1553-7366
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
e1007962
UT code for WoS article
000488322100025
EID of the result in the Scopus database
2-s2.0-85070566141