All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00552367" target="_blank" >RIV/61388963:_____/22:00552367 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11160/22:10450571 RIV/00216208:11310/22:10450571

  • Result on the web

    <a href="https://doi.org/10.1021/acs.joc.1c01561" target="_blank" >https://doi.org/10.1021/acs.joc.1c01561</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.joc.1c01561" target="_blank" >10.1021/acs.joc.1c01561</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations

  • Original language description

    Aldimines, generated in situ from aliphatic, aromatic, and heteroaromatic aldehydes and aliphatic, aromatic, and heteroaromatic primary or secondary amines, can be reduced with trichlorosilane in the presence of dimethylformamide (DMF) as an organocatalyst (≤10 mol %) in toluene or CH2Cl2 at room temperature. The reduction tolerates ketone carbonyls, esters, amides, nitriles, sulfones, sulfonamides, NO2, SF5, and CF3 groups, boronic esters, azides, phosphine oxides, C═C and C≡C bonds, and ferrocenyl nucleus, but sulfoxides and N-oxides are reduced. α,β-Unsaturated aldimines undergo 1,2-reduction only, leaving the C═C bond intact. N-Monoalkylation of primary amines is attained with a 1:1 aldehyde to amine ratio, whereas excess of the aldehyde (≥2:1) allows second alkylation, giving rise to tertiary amines. Reductive N-alkylation of α-amino acids proceeds without racemization, the resulting products, containing a C≡C bond or N3 group, are suitable for click chemistry. This reaction thus offers advantages over the traditional methods (borohydride reduction or catalytic hydrogenation) in terms of efficiency and chemoselectivity. Solubility of some of the reacting partners appears to be the only limitation. The byproducts generated by the workup with aqueous NaHCO3 (i.e., NaCl and silica) are environmentally benign. As a greener alternative, DMA can be employed as a catalyst instead of DMF.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10401 - Organic chemistry

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Efficiency and safety improvement of current drugs and nutraceuticals: advanced methods - new challenges</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Organic Chemistry

  • ISSN

    0022-3263

  • e-ISSN

    1520-6904

  • Volume of the periodical

    87

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    920-943

  • UT code for WoS article

    000745225300001

  • EID of the result in the Scopus database

    2-s2.0-85123289060