Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F22%3A00552367" target="_blank" >RIV/61388963:_____/22:00552367 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11160/22:10450571 RIV/00216208:11310/22:10450571
Result on the web
<a href="https://doi.org/10.1021/acs.joc.1c01561" target="_blank" >https://doi.org/10.1021/acs.joc.1c01561</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.joc.1c01561" target="_blank" >10.1021/acs.joc.1c01561</a>
Alternative languages
Result language
angličtina
Original language name
Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations
Original language description
Aldimines, generated in situ from aliphatic, aromatic, and heteroaromatic aldehydes and aliphatic, aromatic, and heteroaromatic primary or secondary amines, can be reduced with trichlorosilane in the presence of dimethylformamide (DMF) as an organocatalyst (≤10 mol %) in toluene or CH2Cl2 at room temperature. The reduction tolerates ketone carbonyls, esters, amides, nitriles, sulfones, sulfonamides, NO2, SF5, and CF3 groups, boronic esters, azides, phosphine oxides, C═C and C≡C bonds, and ferrocenyl nucleus, but sulfoxides and N-oxides are reduced. α,β-Unsaturated aldimines undergo 1,2-reduction only, leaving the C═C bond intact. N-Monoalkylation of primary amines is attained with a 1:1 aldehyde to amine ratio, whereas excess of the aldehyde (≥2:1) allows second alkylation, giving rise to tertiary amines. Reductive N-alkylation of α-amino acids proceeds without racemization, the resulting products, containing a C≡C bond or N3 group, are suitable for click chemistry. This reaction thus offers advantages over the traditional methods (borohydride reduction or catalytic hydrogenation) in terms of efficiency and chemoselectivity. Solubility of some of the reacting partners appears to be the only limitation. The byproducts generated by the workup with aqueous NaHCO3 (i.e., NaCl and silica) are environmentally benign. As a greener alternative, DMA can be employed as a catalyst instead of DMF.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10401 - Organic chemistry
Result continuities
Project
<a href="/en/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Efficiency and safety improvement of current drugs and nutraceuticals: advanced methods - new challenges</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Organic Chemistry
ISSN
0022-3263
e-ISSN
1520-6904
Volume of the periodical
87
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
920-943
UT code for WoS article
000745225300001
EID of the result in the Scopus database
2-s2.0-85123289060