All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00581097" target="_blank" >RIV/61388963:_____/24:00581097 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/24:73627556

  • Result on the web

    <a href="https://doi.org/10.1039/D3RA08147H" target="_blank" >https://doi.org/10.1039/D3RA08147H</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d3ra08147h" target="_blank" >10.1039/d3ra08147h</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets

  • Original language description

    This study introduces the PocketCFDM generative diffusion model, aimed at improving the prediction of small molecule poses in the protein binding pockets. The model utilizes a novel data augmentation technique, involving the creation of numerous artificial binding pockets that mimic the statistical patterns of non-bond interactions found in actual protein-ligand complexes. An algorithmic method was developed to assess and replicate these interaction patterns in the artificial binding pockets built around small molecule conformers. It is shown that the integration of artificial binding pockets into the training process significantly enhanced the model's performance. Notably, PocketCFDM surpassed DiffDock in terms of non-bond interaction and steric clash numbers, and the inference speed. Future developments and optimizations of the model are discussed. The inference code and final model weights of PocketCFDM are accessible publicly via the GitHub repository: https://github.com/vtarasv/pocket-cfdm.git.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RSC Advances

  • ISSN

    2046-2069

  • e-ISSN

    2046-2069

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    1341-1353

  • UT code for WoS article

    001135725900001

  • EID of the result in the Scopus database

    2-s2.0-85183320570