Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00581097" target="_blank" >RIV/61388963:_____/24:00581097 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/24:73627556
Result on the web
<a href="https://doi.org/10.1039/D3RA08147H" target="_blank" >https://doi.org/10.1039/D3RA08147H</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3ra08147h" target="_blank" >10.1039/d3ra08147h</a>
Alternative languages
Result language
angličtina
Original language name
Augmenting a training dataset of the generative diffusion model for molecular docking with artificial binding pockets
Original language description
This study introduces the PocketCFDM generative diffusion model, aimed at improving the prediction of small molecule poses in the protein binding pockets. The model utilizes a novel data augmentation technique, involving the creation of numerous artificial binding pockets that mimic the statistical patterns of non-bond interactions found in actual protein-ligand complexes. An algorithmic method was developed to assess and replicate these interaction patterns in the artificial binding pockets built around small molecule conformers. It is shown that the integration of artificial binding pockets into the training process significantly enhanced the model's performance. Notably, PocketCFDM surpassed DiffDock in terms of non-bond interaction and steric clash numbers, and the inference speed. Future developments and optimizations of the model are discussed. The inference code and final model weights of PocketCFDM are accessible publicly via the GitHub repository: https://github.com/vtarasv/pocket-cfdm.git.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RSC Advances
ISSN
2046-2069
e-ISSN
2046-2069
Volume of the periodical
14
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1341-1353
UT code for WoS article
001135725900001
EID of the result in the Scopus database
2-s2.0-85183320570