All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F16%3A00467875" target="_blank" >RIV/61388971:_____/16:00467875 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15110/16:33159992 RIV/61989592:15310/16:33159992

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.cbi.2016.10.015" target="_blank" >http://dx.doi.org/10.1016/j.cbi.2016.10.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cbi.2016.10.015" target="_blank" >10.1016/j.cbi.2016.10.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells

  • Original language description

    The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-L-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemico-Biological Interactions

  • ISSN

    0009-2797

  • e-ISSN

  • Volume of the periodical

    260

  • Issue of the periodical within the volume

    25 December

  • Country of publishing house

    IE - IRELAND

  • Number of pages

    9

  • Pages from-to

    58-66

  • UT code for WoS article

    000390515400007

  • EID of the result in the Scopus database

    2-s2.0-84993179326