All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cytoplasmic polyadenylation by TENT5A is required for proper bone formation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F21%3A00543446" target="_blank" >RIV/61388971:_____/21:00543446 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378050:_____/21:00543446

  • Result on the web

    <a href="https://www.cell.com/cell-reports/fulltext/S2211-1247(21)00329-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124721003296%3Fshowall%3Dtrue" target="_blank" >https://www.cell.com/cell-reports/fulltext/S2211-1247(21)00329-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124721003296%3Fshowall%3Dtrue</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.celrep.2021.109015" target="_blank" >10.1016/j.celrep.2021.109015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cytoplasmic polyadenylation by TENT5A is required for proper bone formation

  • Original language description

    Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1 alpha 1, Col1 alpha 2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5 alpha knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10601 - Cell biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cell Reports

  • ISSN

    2211-1247

  • e-ISSN

    2211-1247

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    109015

  • UT code for WoS article

    000642161700012

  • EID of the result in the Scopus database