All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structure and function of bacterial metaproteomes across biomes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F21%3A00546865" target="_blank" >RIV/61388971:_____/21:00546865 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071721002042?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071721002042?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2021.108331" target="_blank" >10.1016/j.soilbio.2021.108331</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structure and function of bacterial metaproteomes across biomes

  • Original language description

    Soil microbes, and the proteins they produce, are responsible for a myriad of soil processes which are integral to life on Earth, supporting soil fertility, nutrient fluxes, trace gas emissions, and plant production. However, how and why the composition of soil microbial proteins (the metaproteome) changes across wide gradients of vegetation, climatic and edaphic conditions remains largely undetermined. By applying high-resolution mass spectrometry to soil samples collected from four continents, we identified the most common proteins in soils, and investigated the primary environmental factors driving their distributions across climate and vegetation types. We found that soil proteins involved in carbohydrate metabolism, DNA repair, lipid metabolism, transcription regulation, tricarboxylic acid cycling, nitrogen (N) fixation and one-carbon metabolism dominate soils across a wide range of climates, vegetation types and edaphic conditions. Vegetation type and climate were important factors determining the community composition of the topsoil metaproteome. Moreover, we show that vegetation type, climate, and key edaphic proporties (mainly soil C fractions, pH and texture) influenced the proportion of important proteins involved in biogeochemical cycles and cellular processes. We also found that protein-based taxonomic information based on proteins has a greater resolution than 16S rRNA gene sequencing with regards to the ability to detect significant correlations with environmental variables. Together, our work identifies the dominant proteins produced by microbes living in a wide range of soils, and advances our understanding of how environmental changes can influence the structure and function of the topsoil metaproteome and the soil processes that they support.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    <a href="/en/project/GJ20-02022Y" target="_blank" >GJ20-02022Y: Dawn of the dead: Chemistry and turnover of dead microbes, and their role in the soil food-chain</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

  • Volume of the periodical

    160

  • Issue of the periodical within the volume

    SEP 2021

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    108331

  • UT code for WoS article

    000683006800001

  • EID of the result in the Scopus database

    2-s2.0-85111006446