All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Functional soil mycobiome across ecosystems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00553492" target="_blank" >RIV/61388971:_____/22:00553492 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1874391921003274?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1874391921003274?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jprot.2021.104428" target="_blank" >10.1016/j.jprot.2021.104428</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Functional soil mycobiome across ecosystems

  • Original language description

    Fungi support a wide range of ecosystem processes such as decomposition of organic matter and plant-soil relationships. Yet, our understanding of the factors driving the metaproteome of fungal communities is still scarce. Here, we conducted a field survey including data on fungal biomass (by phospholipid fatty acids, PLFA), community composition (by metabarcoding of the 18S rRNA gene from extracted DNA) and functional profile (by metaproteomics) to investigate soil fungi and their relation to edaphic and environmental variables across three ecosystems (forests, grasslands, and shrublands) distributed across the globe. We found that protein richness of soil fungi was significantly higher in forests than in shrublands. Among a wide suite of edaphic and environmental variables, we found that soil carbon content and plant cover shaped evenness and diversity of fungal soil proteins while protein richness correlated to mean annual temperature and pH. Functions shifted from metabolism in forests to information processing and storage in shrublands. The differences between the biomes highlight the utility of metaproteomics to investigate functional microbiomes in soil. Significance: Understanding the structure and the function of fungal communities and the driving factors is crucial to determine the contribution to ecosystem services of fungi and what effect future climate has. While there is considerable knowledge on the ecosystem processes provided by fungi such as decomposition of organic matter and plant-soil relationships, our understanding of the driving factors of the fungal metaproteome is scarce. Here we present the first estimates of fungal topsoil protein diversity in a wide range of soils across global biomes. We report taxonomic differences for genes delivered by amplicon sequencing of the 18S rRNA gene and differences of the functional microbiome based on metaproteomics. Both methods gave a complementary view on the fungal topsoil communities, unveiling both taxonomic and functional changes with changing environments. Such a comprehensive multi-omic analysis of fungal topsoil communities has never been performed before, to our knowledge.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    <a href="/en/project/GJ20-02022Y" target="_blank" >GJ20-02022Y: Dawn of the dead: Chemistry and turnover of dead microbes, and their role in the soil food-chain</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Proteomics

  • ISSN

    1874-3919

  • e-ISSN

    1876-7737

  • Volume of the periodical

    252

  • Issue of the periodical within the volume

    FEB 10 2022

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    104428

  • UT code for WoS article

    000725697700001

  • EID of the result in the Scopus database

    2-s2.0-85119670032