Insight into the genomes of dominant yeast symbionts of European spruce bark beetle, Ips typographus
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00571653" target="_blank" >RIV/61388971:_____/23:00571653 - isvavai.cz</a>
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fmicb.2023.1108975/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmicb.2023.1108975/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmicb.2023.1108975" target="_blank" >10.3389/fmicb.2023.1108975</a>
Alternative languages
Result language
angličtina
Original language name
Insight into the genomes of dominant yeast symbionts of European spruce bark beetle, Ips typographus
Original language description
Spruce bark beetle Ips typographus can trigger outbreaks on spruce that results in significant losses in the forest industry. It has been suggested that symbiotic microorganisms inhabiting the gut of bark beetles facilitate the colonization of plant tissues as they play a role in the detoxification of plant secondary metabolites, degrade plant cell wall and ameliorate beetle's nutrition. In this study, we sequenced and functionally annotated the genomes of five yeasts Kuraishia molischiana, Cryptococcus sp., Nakazawaea ambrosiae, Ogataea ramenticola, and Wickerhamomyces bisporus isolated from the gut of Ips typographus. Genome analysis identified 5314, 7050, 5722, 5502, and 5784 protein coding genes from K. molischiana, Cryptococcus sp., N. ambrosiae, O. ramenticola, and W. bisporus, respectively. Protein-coding sequences were classified into biological processes, cellular and molecular function based on gene ontology terms enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation was used to predict gene functions. All analyzed yeast genomes contain full pathways for the synthesis of essential amino acids and vitamin B6, which have nutritional importance to beetle. Furthermore, their genomes contain diverse gene families related to the detoxification processes. The prevalent superfamilies are aldo-keto reductase, ATP-binding cassette and the major facilitator transporters. The phylogenetic relationships of detoxification-related enzymes aldo-keto reductase, and cytochrome P450 monooxygenase, and ATP-binding cassette are presented. Genome annotations also revealed presence of genes active in lignocellulose degradation. In vitro analyses did not confirm enzymatic endolytic degradation of lignocellulose, however, all species can utilize and pectin and produce a large spectrum of exolytic enzymes attacking cellulose, chitin, and lipids.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Microbiology
ISSN
1664-302X
e-ISSN
1664-302X
Volume of the periodical
14
Issue of the periodical within the volume
April 2 2023
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
1108975
UT code for WoS article
000969243700001
EID of the result in the Scopus database
2-s2.0-85153347066