Genomic capacities for Reactive Oxygen Species metabolism across marine phytoplankton
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00572417" target="_blank" >RIV/61388971:_____/23:00572417 - isvavai.cz</a>
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284580" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0284580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0284580" target="_blank" >10.1371/journal.pone.0284580</a>
Alternative languages
Result language
angličtina
Original language name
Genomic capacities for Reactive Oxygen Species metabolism across marine phytoplankton
Original language description
Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have, however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of metabolic function can only apply to Reactive Oxygen Species which potentially traverse the cell membrane outwards, before provoking damaging intracellular reactions. We hypothesized that cell radius influences which elements of Reactive Oxygen Species metabolism are partially or fully dispensable from a cell. We therefore investigated genomes and transcriptomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 mu m radius, to analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Species. Superoxide has high reactivity, short lifetimes and limited membrane permeability. Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the fractional gene allocation decreased with increasing cell radius, consistent with a nearly fixed set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic allocations to both hydrogen peroxide production and scavenging decrease with increasing cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic allocations changed with increasing cell radius. Many taxa, however, lack the genomic capacity for nitric oxide production or scavenging. The probability of presence of capacity to produce nitric oxide decreases with increasing cell size, and is influenced by flagella and colony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide increases with increasing cell size, and is again influenced by flagella and colony formation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
<a href="/en/project/EF16_027%2F0007990" target="_blank" >EF16_027/0007990: International mobility of researchers of the Institute of Microbiology of the CAS, v. v. i.</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Volume of the periodical
18
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
e0284580
UT code for WoS article
000984483800029
EID of the result in the Scopus database
2-s2.0-85153900642