All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Accumulation of Cyanobacterial Photosystem II Containing the 'Rogue' D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00573481" target="_blank" >RIV/61388971:_____/23:00573481 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12310/23:43906692

  • Result on the web

    <a href="https://academic.oup.com/pcp/article/64/6/660/7091590?login=true" target="_blank" >https://academic.oup.com/pcp/article/64/6/660/7091590?login=true</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/pcp/pcad027" target="_blank" >10.1093/pcp/pcad027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Accumulation of Cyanobacterial Photosystem II Containing the 'Rogue' D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein

  • Original language description

    Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant and Cell Physiology

  • ISSN

    0032-0781

  • e-ISSN

    1471-9053

  • Volume of the periodical

    64

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    660-673

  • UT code for WoS article

    000982799700001

  • EID of the result in the Scopus database

    2-s2.0-85162739112