All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chlorophyll f synthesis by a super-rogue photosystem II complex

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F20%3A00524548" target="_blank" >RIV/61388971:_____/20:00524548 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41477-020-0616-4" target="_blank" >https://www.nature.com/articles/s41477-020-0616-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41477-020-0616-4" target="_blank" >10.1038/s41477-020-0616-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chlorophyll f synthesis by a super-rogue photosystem II complex

  • Original language description

    Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation(1,2). The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy(3). Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. (4)) or super-rogue D1 (ref. (5)), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. (4,6)). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term 'super-rogue' PSII, with an unexpected role in pigment biosynthesis rather than water oxidation.nThe cyanobacterial chlorophyll, Chl f, absorbs far-red light. Mutation of two residues in a subunit of photosystem II converts it to a Chl f synthase. This 'super-rogue' photosystem might improve photosynthetic efficiency in low light.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Plants

  • ISSN

    2055-026X

  • e-ISSN

  • Volume of the periodical

    6

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    238-244

  • UT code for WoS article

    000519577200015

  • EID of the result in the Scopus database

    2-s2.0-85081990201