Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F17%3A00480025" target="_blank" >RIV/61388980:_____/17:00480025 - isvavai.cz</a>
Alternative codes found
RIV/61388955:_____/17:00480025 RIV/00216208:11310/17:10366655
Result on the web
<a href="http://dx.doi.org/10.1021/acsami.7b12009" target="_blank" >http://dx.doi.org/10.1021/acsami.7b12009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.7b12009" target="_blank" >10.1021/acsami.7b12009</a>
Alternative languages
Result language
angličtina
Original language name
Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing
Original language description
We report the synthesis and characterization of sulfonated polystyrene nanoparticles (average diameter 30 +/- 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin or ionically entangled tetracationic 5,10,15,20-tetralcis(N-methylpyridinium-4-yl)-porphyrin, their photooxidation properties, and the application of singlet oxygen-sensitized delayed fluorescence (SODF) in oxygen sensing. Both types of nanoparticles effectively photogenerated singlet oxygen, O-2((1)Delta(g)). The O-2((1)Delta(g)) phosphorescence, transient absorption of the porphyrin triplet states, and SODF signals were monitored using time-resolved spectroscopic techniques. The SODF intensity depended on the concentration of the porphyrin photosensitizer and dissolved oxygen and on the temperature. After an initial period (a few microseconds), the kinetics of the SODF process can be approximated as a monoexponential function, and the apparent SODF lifetimes can be correlated with the oxygen concentration. The oxygen sensing based on SODF allowed measurement of the dissolved oxygen in aqueous media in the broad range of oxygen concentrations (0.2-38 mg L-1). The ability of both types of nanoparticles to photooxidize external substrates was predicted by the SODF measurements and proven by chemical tests. The relative photooxidation efficacy was highest at a low porphyrin concentration, as indicated by the highest fluorescence quantum yield (Phi(F)), and it corresponds with negligible inner filter and self-quenching effects. The photooxidation abilities were sensitive to the influence of temperature on the diffusion and solubility of oxygen in both polystyrene and water media and to the rate constant of the O-2((1)Delta(g)) reaction with a substrate. Due to their efficient photogeneration of cytotoxic O-2((1)Delta(g)) at physiological temperatures and their oxygen sensing via SODF, both types of nanoparticles are promising candidates for biomedical applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
<a href="/en/project/GA16-15020S" target="_blank" >GA16-15020S: Photoactive Polymer Materials with Nanostructured Surfaces for Biomedical Applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
41
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
36229-36238
UT code for WoS article
000413503700075
EID of the result in the Scopus database
2-s2.0-85031725427