All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F19%3A00498856" target="_blank" >RIV/61388980:_____/19:00498856 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/19:00498856 RIV/44555601:13520/19:43894013 RIV/00216275:25310/19:39915968

  • Result on the web

    <a href="http://hdl.handle.net/11104/0293774" target="_blank" >http://hdl.handle.net/11104/0293774</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clay.2018.12.018" target="_blank" >10.1016/j.clay.2018.12.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions

  • Original language description

    The urea hydrolysis method was applied to prepare Mg-Al-La layered double hydroxides (LDH) and its hybrids with different amounts of magnetic MnFe2O4 nanoparticles. The new hybrid materials were characterized by X-ray powder diffraction, FTIR and Raman spectroscopy, AFM, SEM, TEM/EDX microscopic methods, BET specific surface area determination and inductively coupled plasma (ICP). The AFM and TEM/EDX analyses clearly showed MnFe2O4 nanoparticles to be predominantly localized on the surface of LDH sheets. Almost two-fold increase of the specific surface area was observed for the Mg-Al-La LDH-MnFe2O4 hybrids compared to the pristine LDH. All synthesized hybrids were studied for their adsorption capacities of Acid orange 7 dye. The adsorption studies were measured at pH 4.0, 7.0 and 10.0. The resulting data were fitted by Langmuir and Langmuir-Freundlich models. The Langmuir isotherm model exhibited a maximum adsorption capacity of Acid orange 7 dye (687.9 mg/g) for Mg-Al-La LDH-MnFe2O4 hybrid material. The lower pH positively affected higher adsorption capacity of Acid orange 7 dye. The prepared Mg-Al-La LDH-MnFe2O4 hybrid materials thus showed to be new promising adsorbents of anionic dyes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Clay Science

  • ISSN

    0169-1317

  • e-ISSN

  • Volume of the periodical

    169

  • Issue of the periodical within the volume

    MAR

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000458225700001

  • EID of the result in the Scopus database

    2-s2.0-85058645821