All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of buffer in simulated body fluid on morphology and crystallinity of hydroxyapatite precipitated on 45S5 bioactive glass-derived glass–ceramic scaffolds: comparison of Good's buffer systems and TRIS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F21%3A00544522" target="_blank" >RIV/61388980:_____/21:00544522 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.mtchem.2021.100527" target="_blank" >https://doi.org/10.1016/j.mtchem.2021.100527</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtchem.2021.100527" target="_blank" >10.1016/j.mtchem.2021.100527</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of buffer in simulated body fluid on morphology and crystallinity of hydroxyapatite precipitated on 45S5 bioactive glass-derived glass–ceramic scaffolds: comparison of Good's buffer systems and TRIS

  • Original language description

    In vitro tests that verify the ability of a material to form bone-like apatite precipitated (HAp) use a solution that imitates the inorganic part of blood plasma, simulated body fluid (SBF). During such tests, it is necessary to maintain a neutral pH, for which purpose the International Standards Organization recommends the TRIS (tris(hydroxymethyl)aminomethane) buffer (ISO 23,317:2014). To do this, TRIS buffer must remain inert, but, as we have previously reported, TRIS interacts with highly bioreactive materials (such as 45S5 Bioglass-derived scaffolds), thereby accelerating scaffold dissolution. In the search for an alternative to TRIS, we have also recently published results for the 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 3-(N-morpholino) propanesulfonic acid (MOPS) buffers, which were also unable to maintain a neutral pH in SBF. Thus, we here continue our search for a more suitable Good's buffer by comparing BES (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid) and TES (2-[(2-hydroxy-1,1-bis(hydroxymethyl) ethyl) amino] ethanesulfonic acid) with TRIS. 45S5-derived glass–ceramic scaffolds were tested under static–dynamic conditions for bone-like apatite formation using SBF + BES and SBF + TES solutions. The pH measurements, leachate analysis [atomic absorption spectrophotometry (AAS) (Ca2+, SiIV), UltraViolet-Visible (UV-VIS) spectrophotometry (PO4)3−], and scaffold analysis [X-Ray powder diffraction analysis (XRD), X-ray fluorescent analysis (XRF), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), Brunauer.Emmett.Teller specific surface area analysis (BET)] all showed that both BES and TES quickly interacted with the tested material. Moreover, the kinetics of the glass–ceramic dissolution affected the crystallinity and morphology of the precipitated HAp. Based on our previous results and the present data, it appears that Good's buffers are not suitable for the in vitro testing of bioactivity of highly bioreactive materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials Today Chemistry

  • ISSN

    2468-5194

  • e-ISSN

    2468-5194

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    AUG

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    100527

  • UT code for WoS article

    000696937300014

  • EID of the result in the Scopus database

    2-s2.0-85111318825