Compressible flows of viscous fluid in 3D channel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F15%3A00439030" target="_blank" >RIV/61388998:_____/15:00439030 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/15:00226157
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-10705-9_65" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10705-9_65</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10705-9_65" target="_blank" >10.1007/978-3-319-10705-9_65</a>
Alternative languages
Result language
angličtina
Original language name
Compressible flows of viscous fluid in 3D channel
Original language description
This study deals with the numerical solution of a 3D compressible flow of a viscous fluid in a channel for low inlet airflow velocity. The channel is a simplified model of the glottal space in the human vocal tract. The system of Navier-Stokes equationshas been used as mathematical model of laminar flow of the compressible viscous fluid in a domain. The numerical solution is implemented using the finite volume method (FVM) and the predictor-corrector MacCormack scheme with artificial viscosity using agrid of hexahedral cells. The numerical simulations of flow fields in the channel, acquired from a developed program, are presented for inlet velocity u = 4,12 m/s and Reynolds number Re = 4.481.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BI - Acoustics and oscillation
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications - ENUMATH 2013
ISBN
978-3-319-10704-2
ISSN
1439-7358
e-ISSN
—
Number of pages
6
Pages from-to
661-666
Publisher name
Springer International Publishing
Place of publication
Lausanne
Event location
Lausanne
Event date
Aug 26, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—