All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

EFFECT OF ETHANOL AND ACETALDEHYDE AT CLINICALLY RELEVANT CONCENTRATIONS ON ATRIAL INWARD RECTIFIER POTASSIUM CURRENT I-K1 SEPARATE AND COMBINED EFFECT

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F16%3A00461806" target="_blank" >RIV/61388998:_____/16:00461806 - isvavai.cz</a>

  • Alternative codes found

    RIV/62157124:16370/16:43874556 RIV/00216224:14110/16:00088864

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    EFFECT OF ETHANOL AND ACETALDEHYDE AT CLINICALLY RELEVANT CONCENTRATIONS ON ATRIAL INWARD RECTIFIER POTASSIUM CURRENT I-K1 SEPARATE AND COMBINED EFFECT

  • Original language description

    Atrial fibrillation is the most common arrhythmia at alcohol consumption. Its pathogenesis is complex, at least partly related to changes of cardiac inward rectifier potassium currents including IK1. Both ethanol and acetaldehyde have been demonstrated to considerably modify IK1 in rat ventricular myocytes. However, analogical data on the atrial IK1 are lacking. The present study aimed to analyse IK1 changes induced by ethanol and acetyldehyde in atrial myocytes. The experiments were performed by the whole cell patch-clamp technique at 23 1°C on enzymatically isolated rat and guinea-pig atrial myocytes as well as on expressed human Kir2.3 channels. Ethanol (8 – 80 mM) caused a dual effect on the atrial IK1 showing the steady-state activation in some cells but inhibition in others in agreement with the ventricular data; on average, the activation was observed (at 20 mM by 4.3 and 4.5% in rat and guinea-pig atrial myocytes, respectively). The effect slightly increased with depolarization above –60 mV. In contrast, the current through human Kir2.3 channels (prevailing atrial IK1 subunit) was inhibited in all measured cells. Unlike ethanol, acetaldehyde (3 μM) markedly inhibited the rat atrial IK1 (by 15.1%) in a voltage-independent manner, comparably to the rat ventricular IK1. The concurrent application of ethanol (20 mM) and acetaldehyde (3 μM) resulted in the steady-state IK1 activation by 2.1% on average. We conclude that ethanol and even more acetaldehyde affected IK1 at clinically relevant concentrations if applied separately. Their combined effect did not significantly differ from the effect of ethanol alone.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BO - Biophysics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/NT14301" target="_blank" >NT14301: Effect of ethanol and its principle metabolite acetaldehyde on cardiac inward rectifier potassium currents: a link to atrial fibrillation related to alcohol consumption?</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physiology and Pharmacology

  • ISSN

    0867-5910

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    PL - POLAND

  • Number of pages

    13

  • Pages from-to

    339-351

  • UT code for WoS article

    000383528300002

  • EID of the result in the Scopus database

    2-s2.0-84982957530