All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Thermodynamics of Fluid Polyamorphism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F18%3A00491218" target="_blank" >RIV/61388998:_____/18:00491218 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1103/PhysRevX.8.011004" target="_blank" >http://dx.doi.org/10.1103/PhysRevX.8.011004</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevX.8.011004" target="_blank" >10.1103/PhysRevX.8.011004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Thermodynamics of Fluid Polyamorphism

  • Original language description

    Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review X

  • ISSN

    2160-3308

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000419715500001

  • EID of the result in the Scopus database

    2-s2.0-85041030481