Time-Delay Circuits for Fluidic Oscillators and Pulse Shapers
Result description
Fluidic signals transferred between mutually communicating components of fluidic circuits are nowadays still often in the format of continuously varied value of pressure or flow rate. Especially when transported over longer distances, these simple signals may easily deteriorate due to varying properties they meet in the transmission. An example are friction losses dependent on local temperature. A solution to this signal corruption problem is to encode the signals into flow pulses. Their parameters (such as the number of pulses in a delivered pulse cluster) much less deteriorating during transfer are derived from the time delays generated in delay circuits and oscillators. This paper surveys the basic physical aspects of the fluidic pulse generation and shaping, also presents somenexamples of circuit design.
Keywords
fluid mechanicsfluidicsoscillatorstime delaypulse traincaptive vortex
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Time-Delay Circuits for Fluidic Oscillators and Pulse Shapers
Original language description
Fluidic signals transferred between mutually communicating components of fluidic circuits are nowadays still often in the format of continuously varied value of pressure or flow rate. Especially when transported over longer distances, these simple signals may easily deteriorate due to varying properties they meet in the transmission. An example are friction losses dependent on local temperature. A solution to this signal corruption problem is to encode the signals into flow pulses. Their parameters (such as the number of pulses in a delivered pulse cluster) much less deteriorating during transfer are derived from the time delays generated in delay circuits and oscillators. This paper surveys the basic physical aspects of the fluidic pulse generation and shaping, also presents somenexamples of circuit design.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Energies
ISSN
1996-1073
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
3071
UT code for WoS article
000484454000034
EID of the result in the Scopus database
2-s2.0-85070565939
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Fluids and plasma physics (including surface physics)
Year of implementation
2019